Нормы пожарной безопасности НПБ 105-03 "Определение категорий помещений, зданий и наружных установок по взрывопожарной и пожарной опасности" (утв. приказом МЧС РФ от 18 июня 2003 г. N 314)

Determination of categories of rooms, buildings and externalon explosion and fire hazard

По заключению Минюста РФ от 26 июня 2003 г. N 07/6463-ЮД настоящие нормы не нуждаются в государственной регистрации

Взамен НПБ 105-95, НПБ 107-97 Дата введения 01.08.2003 г.

1. Общие положения	$(\pi.\pi. 1-3)$
2. Категории помещений по взрывопожарной и пожарной	$(\pi.\pi. 4-5)$
<u>ONACHOCTN</u>	
3. Методы расчета критериев взрывопожарной опасности	$(\pi.\pi. 6-27)$
<u>помещений</u>	
4. Категории зданий по взрывопожарной и пожарной	(п.п. 28-32)
<u>опасности</u>	
5. Категории наружных установок по пожарной опасности	$(\pi.\pi. 33-35)$
6. Методы расчета значений критериев пожарной опасности	$(\pi.\pi. 36-58)$
наружных установок	
Методы расчета значений критериев пожарной опасности	(п.п. 36-48)
для горючих газов и паров	
Метод расчета значений критериев пожарной опасности	$(\pi.\pi. 49-55)$
для горючих пылей	
Метод расчета интенсивности теплового излучения	$(\pi.\pi. 56-58)$
7. Метод оценки индивидуального риска	$(\pi.\pi. 59-64)$
Приложение (рекомендуемое). Расчетное определение значения	коэффициента
<u> Z участия горючих газов и паров</u>	ненагретых
легковоспламеняющихся жидкостей во взрыве	

Настоящие нормы устанавливают методику определения категорий помещений и зданий (или частей зданий между противопожарными стенами - пожарных отсеков)* производственного и складского назначения по взрывопожарной и пожарной опасности в зависимости от количества и пожаровзрывоопасных свойств находящихся (обращающихся) в них веществ и материалов с учетом особенностей технологических процессов размещенных в них производств, а также методику определения категорий наружных установок производственного и складского назначения** по пожарной опасности.

Методика определения категорий помещений и зданий по взрывопожарной и пожарной опасности должна использоваться в проектно-сметной и эксплуатационной документации на здания, помещения и наружные установки.

Категории помещений и зданий предприятий и учреждений определяются на стадии проектирования зданий и сооружений в соответствии с настоящими нормами и ведомственными нормами технологического проектирования, утвержденными в установленном порядке.

Требования норм к наружным установкам должны учитываться в проектах на строительство, расширение, реконструкцию и техническое перевооружение, при изменениях технологических процессов и при эксплуатации наружных установок. Наряду с настоящими нормами следует также руководствоваться положениями ведомственных норм технологического проектирования, касающихся категорирования наружных установок, утвержденных в установленном порядке.

В области оценки взрывоопасности настоящие нормы выделяют категории взрывопожароопасных помещений и зданий, более детальная классификация которых по взрывоопасности и необходимые защитные мероприятия должны регламентироваться самостоятельными нормативными документами.

Категории помещений и зданий, определенные в соответствии с настоящими нормами, следует применять для установления нормативных требований по обеспечению взрывопожарной и пожарной безопасности указанных помещений и зданий в отношении планировки и застройки, этажности, площадей, размещения помещений, конструктивных решений, инженерного оборудования.

Настоящие нормы не распространяются:

на помещения и здания для производства и хранения взрывчатых веществ (далее - ВВ), средств инициирования ВВ, здания и сооружения, проектируемые по специальным нормам и правилам, утвержденным в установленном порядке;

на наружные установки для производства и хранения ВВ, средств инициирования ВВ, наружные установки, проектируемые по специальным нормам и правилам, утвержденным в установленном порядке, а также на оценку уровня взрывоопасности наружных установок.

Термины и их определения приняты в соответствии с нормативными документами по пожарной безопасности.

Под термином "Наружная установка" в настоящих нормах понимается комплекс аппаратов и технологического оборудования, расположенных вне зданий, с несущими и обслуживающими конструкциями.

1. Общие положения

1. По взрывопожарной и пожарной опасности помещения подразделяются на категории A, Б, В1 - В4, Г и Д, а здания - на категории A, Б, В, Г и Д.

По пожарной опасности наружные установки подразделяются на категории А_н, Б_н, В_н, Г_н и Д_н.

2. Категории взрывопожарной и пожарной опасности помещений и зданий определяются для наиболее неблагоприятного в отношении пожара или взрыва периода, исходя из вида находящихся в аппаратах и помещениях горючих веществ и материалов, их количества и пожароопасных свойств, особенностей технологических процессов.

Категории пожарной опасности наружных установок определяются, исходя из вида находящихся в наружных установках горючих веществ и материалов, их количества и пожароопасных свойств, особенностей технологических процессов.

3. Определение пожароопасных свойств веществ и материалов производится на основании результатов испытаний или расчетов по стандартным методикам с учетом параметров состояния (давления, температуры и т.д.).

Допускается использование справочных данных, опубликованных головными научно-исследовательскими организациями в области пожарной безопасности или выданных Государственной службой стандартных справочных данных.

Допускается использование показателей пожарной опасности для смесей веществ и материалов по наиболее опасному компоненту.

2. Категории помещений по взрывопожарной и пожарной опасности

- 4. Категории помещений по взрывопожарной и пожарной опасности принимаются в соответствии с табл.1.
- 5. Определение категорий помещений следует осуществлять путем последовательной проверки принадлежности помещения к категориям, приведенным в табл.1, от высшей (А) к низшей (Д).

Таблица 1

Категория помещения	Характеристика веществ и материалов, находящихся (обращающихся) в помещении
А взрывопожароопас- ная	Горючие газы, легковоспламеняющиеся жидкости с температурой вспышки не более 28°С в таком количестве, что могут образовывать взрывоопасные парогазовоздушные смеси, при воспламенении которых развивается расчетное избыточное давление взрыва в помещении, превышающее 5 кПа. Вещества и материалы, способные взрываться и гореть при взаимодействии с водой, кислородом воздуха или друг с другом в таком количестве, что расчетное избыточное давление взрыва в помещении превышает 5 кПа
Б	Горючие пыли или волокна, легковоспламеняющиеся

взрывопожароопас- ная	жидкости с температурой вспышки более 28°С, горючие жидкости в таком количестве, что могут образовывать взрывоопасные пылевоздушные или паровоздушные смеси, при воспламенении которых развивается расчетное избыточное давление взрыва в помещении, превышающее 5 кПа
В1 - В4 пожароопасные	Горючие и трудногорючие жидкости, твердые горючие и трудногорючие вещества и материалы (в том числе пыли и волокна), вещества и материалы, способные при взаимодействии с водой, кислородом воздуха или друг с другом только гореть, при условии, что помещения, в которых они имеются в наличии или обращаются, не относятся к категориям А или Б
Г	Негорючие вещества и материалы в горячем, раскаленном или расплавленном состоянии, процесс обработки которых сопровождается выделением лучистого тепла, искр и пламени; горючие газы, жидкости и твердые вещества, которые сжигаются или утилизируются в качестве топлива
д	Негорючие вещества и материалы в холодном состоянии

Примечание:

Разделение помещений на категории B1 - B4 регламентируется положениями, изложенными в табл.4.

3. Методы расчета критериев взрывопожарной опасности помещений

Выбор и обоснование расчетного варианта

Расчет избыточного давления взрыва для горючих газов, паров

легковоспламеняющихся и горючих жидкостей

Расчет избыточного давления взрыва для горючих пылей

Определение категорий В1 - В4 помещений

Определение избыточного давления взрыва для веществ и материалов,

способных взрываться и гореть при взаимодействии с водой, кислородом

воздуха или друг с другом

Определение избыточного давления взрыва для взрывоопасных смесей,

содержащих горючие газы (пары) и пыли

Выбор и обоснование расчетного варианта

- 6. При расчете значений критериев взрывопожарной опасности в качестве расчетного следует выбирать наиболее неблагоприятный вариант аварии или период нормальной работы аппаратов, при котором во взрыве участвует наибольшее количество веществ или материалов, наиболее опасных в отношении последствий взрыва.
- В случае если использование расчетных методов не представляется возможным, допускается определение значений критериев взрывопожарной опасности на основании результатов соответствующих научно-исследовательских работ, согласованных и утвержденных в установленном порядке.
- 7. Количество поступивших в помещение веществ, которые могут образовать взрывоопасные газовоздушные или паровоздушные смеси, определяется исходя из следующих предпосылок:
 - а) происходит расчетная авария одного из аппаратов согласно п.6;
 - б) все содержимое аппарата поступает в помещение;
- в) происходит одновременно утечка веществ из трубопроводов, питающих аппарат, по прямому и обратному потокам в течение времени, необходимого для отключения трубопроводов.

Расчетное время отключения трубопроводов определяется в каждом конкретном случае исходя из реальной обстановки и должно быть минимальным с учетом паспортных данных на запорные устройства, характера технологического процесса и вида расчетной аварии.

Расчетное время отключения трубопроводов следует принимать равным:

времени срабатывания системы автоматики отключения трубопроводов согласно паспортным данным установки, если вероятность отказа системы автоматики не превышает 0,000001 в год или обеспечено резервирование ее элементов;

120 с, если вероятность отказа системы автоматики превышает 0,000001 в год и не обеспечено резервирование ее элементов;

300 с при ручном отключении.

Не допускается использование технических средств для отключения трубопроводов, для которых время отключения превышает приведенные выше значения.

Под "временем срабатывания" и "временем отключения" следует понимать промежуток времени от начала возможного поступления горючего вещества из трубопровода (перфорация, разрыв, изменение номинального давления и т.п.) до полного прекращения поступления газа или жидкости в помещение. Быстродействующие клапаны-отсекатели должны автоматически перекрывать подачу газа или жидкости при нарушении электроснабжения.

В исключительных случаях в установленном порядке допускается превышение приведенных выше значений времени отключения трубопроводов специальным решением соответствующих федеральных министерств и других федеральных органов исполнительной власти по согласованию с Госгортехнадзором России на подконтрольных ему производствах и предприятиях и МЧС России;

- г) происходит испарение с поверхности разлившейся жидкости; площадь испарения при разливе на пол определяется (при отсутствии справочных данных) исходя из расчета, что 1 л смесей и растворов, содержащих 70% и менее (по массе) растворителей, разливается на площади 0,5 м2, а остальных жидкостей на 1 м2 пола помещения;
- д) происходит также испарение жидкости из емкостей, эксплуатируемых с открытым зеркалом жидкости, и со свежеокрашенных поверхностей;
- е) длительность испарения жидкости принимается равной времени ее полного испарения, но не более 3600 с.
- 8. Количество пыли, которое может образовать взрывоопасную смесь, определяется из следующих предпосылок:
- а) расчетной аварии предшествовало пыленакопление в производственном помещении, происходящее в условиях нормального режима работы (например, вследствие пылевыделения из негерметичного производственного оборудования);
- б) в момент расчетной аварии произошла плановая (ремонтные работы) или внезапная разгерметизация одного из технологических аппаратов, за которой последовал аварийный выброс в помещение всей находившейся в аппарате пыли.
- 9. Свободный объем помещения определяется как разность между объемом помещения и объемом, занимаемым технологическим оборудованием. Если свободный объем помещения определить невозможно, то его допускается принимать условно равным 80% геометрического объема помещения.

Расчет избыточного давления взрыва для горючих газов, паров легковоспламеняющихся и горючих жидкостей

10. Избыточное давление взрыва Дельта Р для индивидуальных горючих веществ, состоящих из атомов С, H, O, N, Cl, Br, I, F, определяется по формуле

Дельта
$$P = (P - P) \frac{mZ}{-} \frac{100 \ 1}{-},$$
 (1) $\frac{m}{}$ $\frac{m}{$

где P_max - максимальное давление взрыва стехиометрической газовоздушной или паровоздушной смеси в замкнутом объеме, определяемое экспериментально или по справочным данным в соответствии с требованиями <u>п.3.</u> При отсутствии данных допускается принимать P_max равным 900 кПа; P_0 - начальное давление, кПа (допускается принимать равным 101 кПа); m - масса горючего газа (ГГ) или паров легковоспламеняющихся (ЛВЖ) и горючих жидкостей (ГЖ), вышедших в результате расчетной аварии в помещение, вычисляемая для ГГ по формуле (6), а для паров ЛВЖ и ГЖ по формуле (11), кг; Z - коэффициент участия горючего во взрыве, который может быть рассчитан на основе характера

распределения газов и паров в объеме помещения согласно <u>приложению.</u> Допускается принимать значение Z по <u>табл.2;</u> V_св - свободный объем помещения, м3; ро_г,п - плотность газа или пара при расчетной температуре t_p, кг x м(-3), вычисляемая по формуле

$$po = \frac{M}{V (1+0,00367t)},$$

$$0 p$$
(2)

где М - молярная масса, кг х кмоль(-1); V_0 - мольный объем, равный 22,413 м3 х кмоль(-1); t_p - расчетная температура, °C. В качестве расчетной температуры следует принимать максимально возможную температуру воздуха в данном помещении в соответствующей климатической зоне или максимально возможную температуру воздуха по технологическому регламенту с учетом возможного повышения температуры в аварийной ситуации. Если такого значения расчетной температуры t_p по каким-либо причинам определить не удается, допускается принимать ее равной t_p стехнометрическая концентрация ГГ или паров ЛВЖ и ГЖ, % (об.), вычисляемая по формуле

$$C = \frac{100}{1+4,84 \text{ бета}}, \tag{3}$$

$$CT = \frac{1}{1+4,84 \text{ бета}}, \tag{4}$$

$$CT = \frac{1}{1+4,84 \text{ бета}}, \tag{4}$$

$$CT = \frac{1}{1+$$

Таблица 2

Вид горючего вещества	Значение Z
Водород	1,0
Горючие газы (кроме водорода)	0,5
Легковоспламеняющиеся и горючие жидкости, нагретые до температуры вспышки и выше	0,3
Легковоспламеняющиеся и горючие жидкости, нагретые ниже температуры вспышки, при наличии возможности образования аэрозоля	0,3
Легковоспламеняющиеся и горючие жидкости, нагретые ниже температуры вспышки, при отсутствии возможности образования аэрозоля	0

11. Расчет Дельта_Р для индивидуальных веществ, кроме упомянутых в <u>п.10</u>, а также для смесей может быть выполнен по формуле

$$\text{МН Р Z}$$

$$\text{Т 0} \qquad \qquad 1$$
Дельта $\text{P} = \frac{\text{T 0}}{\text{V po C T}} \qquad \text{K}$

$$\text{CB B P 0} \qquad \text{H}$$

где H_T - теплота сгорания, Дж х кг(-1); ро_в - плотность воздуха до взрыва при начальной температуре T_0 , кг х м(-3); C_p - теплоемкость воздуха, Дж х кг(-1) х K(-1) (допускается принимать равной 1,01 х 10(3) Дж х кг(-1) х K(-1)); T_0 - начальная температура воздуха, К.

12. В случае обращения в помещении горючих газов, легковоспламеняющихся или горючих жидкостей при определении значения массы m, входящей в формулы (1) и (4), допускается учитывать работу аварийной вентиляции, если она обеспечена резервными вентиляторами, автоматическим пуском при превышении предельно допустимой взрывобезопасной концентрации и электроснабжением по первой категории надежности (ПУЭ), при условии расположения устройств для удаления воздуха из помещения в непосредственной близости от места возможной аварии.

При этом массу m горючих газов или паров легковоспламеняющихся или горючих жидкостей, нагретых до температуры вспышки и выше, поступивших в объем помещения, следует разделить на коэффициент K, определяемый по формуле

$$K = AT + 1, \tag{5}$$

где A - кратность воздухообмена, создаваемого аварийной вентиляцией, c(-1); T - продолжительность поступления горючих газов и паров легковоспламеняющихся и горючих жидкостей в объем помещения, c (принимается по $\underline{n}.7$).

13. Масса m, кг, поступившего в помещение при расчетной аварии газа определяется по формуле

$$m = (V + V) po,$$

$$a T r$$
(6)

где V_а - объем газа, вышедшего из аппарата, м3; V_т - объем газа, вышедшего из трубопроводов, м3.

При этом

$$V = 0,01 P V,$$
 (7)

где P_1 - давление в аппарате, кПа; V - объем аппарата, м3;

$$V = V + V ,$$

$$T 1T 2T$$
(8)

где V_1 т - объем газа, вышедшего из трубопровода до его отключения, м3; V_2 т - объем газа, вышедшего из трубопровода после его отключения, м3;

$$V = qT,$$

$$1T$$
(9)

где q - расход газа, определяемый в соответствии с технологическим регламентом в зависимости от давления в трубопроводе, его диаметра, температуры газовой среды и т.д., м3 х с(-1); T - время, определяемое по $\underline{n.7}$, c;

$$V = 0,01$$
 пи $P (r L + r L + ... + r L),$ (10)
 2τ 2 1 1 2 2 n n

где P_2 - максимальное давление в трубопроводе по технологическому регламенту, кПа; r - внутренний радиус трубопроводов, м; L - длина трубопроводов от аварийного аппарата до задвижек, м.

14. Масса паров жидкости m, поступивших в помещение при наличии нескольких источников испарения (поверхность разлитой жидкости, поверхность со свеженанесенным составом, открытые емкости и т.п.), определяется из выражения

$$m = m + m + m , \qquad (11)$$

$$p \quad \text{emk} \quad \text{CB.OKP}$$

где m_p - масса жидкости, испарившейся с поверхности разлива, кг; m_емк - масса жидкости, испарившейся с поверхностей открытых емкостей, кг; m_св.окр - масса жидкости, испарившейся с поверхностей, на которые нанесен применяемый состав, кг.

При этом каждое из слагаемых в формуле (11) определяется по формуле

$$m = WF T, \tag{12}$$

где W - интенсивность испарения, кг x c(-1) x м(-2); F_и - площадь испарения, м2, определяемая в соответствии с п.7 в зависимости от массы жидкости m п, вышедшей в помещение.

Если аварийная ситуация связана с возможным поступлением жидкости в распыленном состоянии, то она должна быть учтена в формуле (11) введением дополнительного слагаемого, учитывающего общую массу поступившей жидкости от распыляющих устройств, исходя из продолжительности их работ.

- 15. Масса тп, кг, вышедшей в помещение жидкости определяется в соответствии с п.7.
- 16. Интенсивность испарения W определяется по справочным и экспериментальным данным. Для ненагретых выше температуры окружающей среды ЛВЖ при отсутствии данных допускается рассчитывать W по формуле

$$-6$$
 W = 10 эта корень кв.(M) Р,

где эта - коэффициент, принимаемый по <u>табл.3</u> в зависимости от скорости и температуры воздушного потока над поверхностью испарения; Р_н - давление насыщенного пара при расчетной температуре жидкости t_p, определяемое по справочным данным в соответствии с требованиями <u>п.3</u>, кПа.

Таблица 3

Скорость воздушного потока	Значение коэффициента эта при температуре t, °C, воздуха в помещении			et, °C,	
в помещении, м х с(-1)	10	15	20	30	35
0	1,0	1,0	1,0	1,0	1,0
0,1	3,0	2,6	2,4	1,8	1,6
0,2	4,6	3,8	3 , 5	2,4	2,3
0,5	6,6	5 , 7	5 , 4	3,6	3,2
1,0	10,0	8,7	7,7	5,6	4,6

Расчет избыточного давления взрыва для горючих пылей

17. Расчет избыточного давления взрыва Дельта_Р, кПа, производится по формуле (4), где коэффициент Z участия взвешенной пыли во взрыве рассчитывается по формуле

$$Z = 0,5F, \tag{14}$$

- где F массовая доля частиц пыли размером менее критического, с превышением которого аэровзвесь становится взрывобезопасной, т.е. неспособной распространять пламя. В отсутствие возможности получения сведений для оценки величины Z допускается принимать Z = 0,5.
- 18. Расчетная масса взвешенной в объеме помещения пыли m, кг, образовавшейся в результате аварийной ситуации, определяется по формуле

$$m = m + m , (15)$$

$$B3 AB$$

где m_вз - расчетная масса взвихрившейся пыли, кг; m_ав - расчетная масса пыли, поступившей в помещение в результате аварийной ситуации, кг.

19. Расчетная масса взвихрившейся пыли т вз определяется по формуле

$$m = K m$$
, (16)

где К_вз - доля отложившейся в помещении пыли, способной перейти во взвешенное состояние в результате аварийной ситуации. При отсутствии экспериментальных сведений о величине К_вз допускается полагать К вз = 0,9; m п - масса отложившейся в помещении пыли к моменту аварии, кг.

20. Расчетная масса пыли, поступившей в помещение в результате аварийной ситуации, m_aв, определяется по формуле

$$m = (m + qT) K$$
, (17)

где m_an - масса горючей пыли, выбрасываемой в помещение из аппарата, кг; q - производительность, c которой продолжается поступление пылевидных веществ в аварийный аппарат по трубопроводам до момента их отключения, кг х c(-1); T - время отключения, определяемое по n.7в), c; K_n - коэффициент пыления, представляющий отношение массы взвешенной в воздухе пыли ко всей массе пыли, поступившей из аппарата в помещение. При отсутствии экспериментальных сведений о величине K_n допускается полагать:

для пылей с дисперсностью не менее 350 мкм - K_{Π} = 0,5; для пылей с дисперсностью менее 350 мкм - K_{Π} = 1,0.

Величина т_ап принимается в соответствии с пп.6 и 8.

21. Масса отложившейся в помещении пыли к моменту аварии определяется по формуле

$$m = \frac{K}{T} (m + m),$$

$$\pi K 1 2$$

$$y$$
(18)

где K_r - доля горючей пыли в общей массе отложений пыли; m_1 - масса пыли, оседающей на труднодоступных для уборки поверхностях в помещении за период времени между генеральными уборками, кг; m_2 - масса пыли, оседающей на доступных для уборки поверхностях в помещении за период времени между текущими уборками, кг; K_y - коэффициент эффективности пылеуборки. Принимается при ручной пылеуборке:

сухой - 0,6;

влажной - 0,7.

При механизированной вакуумной уборке:

пол ровный - 0,9;

пол с выбоинами (до 5% площади) - 0,7.

Под труднодоступными для уборки площадями подразумевают такие поверхности в производственных помещениях, очистка которых осуществляется только при генеральных пылеуборках. Доступными для уборки местами являются поверхности, пыль с которых удаляется в процессе текущих пылеуборок (ежесменно, ежесуточно и т.п.).

22. Масса пыли m_i (i = 1, 2), оседающей на различных поверхностях в помещении за межуборочный период, определяется по формуле

$$m = M (1 - альфа)$$
 бета , $(i = 1; 2)$ (19) i i

где M = сумма M - масса пыли, выделяющаяся в объем помещения за 1 ј 1ј

период времени между генеральными пылеуборками, кг; M_1 - масса пыли, выделяемая единицей пылящего оборудования за указанный период, кг; M_2 - масса пыли, выделяющаяся в объем помещения за период 2 ј 2 ј

времени между текущими пылеуборками, кг; М 2j - масса пыли, выделяемая

единицей пылящего оборудования за указанный период, кг; альфа – доля выделяющейся в объем помещения пыли, которая удаляется вытяжными вентиляционными системами. При отсутствии экспериментальных сведений о величине альфа полагают альфа = 0; бета_1; бета_2 – доли выделяющейся в объем помещения пыли, оседающей соответственно на труднодоступных и доступных для уборки поверхностях помещения (бета 1 + 6 бета 2 = 1).

При отсутствии сведений о величине коэффициентов бета_1 и бета_2 допускается полагать бета_1 = 1, бета_2 = 0.

23. Величина M_i (i = 1; 2) может быть также определена экспериментально (или по аналогии с действующими образцами производств) в период максимальной загрузки оборудования по формуле

$$M = \text{сумма} (G \times F) \text{ Tay} \qquad (i = 1; 2)$$
 (20 i j ij i

где G_1j , G_2j - интенсивность пылеотложений соответственно на труднодоступных F_1j (м2) и доступных F_2j (м2) площадях, кг х м(-2)c(-1); тау_1, тау_2 - промежуток времени соответственно между генеральными и текущими пылеуборками, с.

Определение категорий В1 - В4 помещений

24. Определение пожароопасной категории помещения осуществляется путем сравнения максимального значения удельной временной пожарной нагрузки (далее по тексту - пожарная нагрузка) на любом из участков с величиной удельной пожарной нагрузки, приведенной в табл.4.

Таблица 4

Категория помещения	Удельная пожарная нагрузка д на участке, МДж х м(-2)	Способ размещения
B1	Более 2200	Не нормируется
В2	1401 - 2200	См. <u>п.25</u>
В3	181 - 1400	То же
В4	1 - 180	На любом участке пола помещения площадью 10 м2. Способ размещения участков пожарной нагрузки определяется согласно п.25

25. При пожарной нагрузке, включающей в себя различные сочетания (смесь) горючих, трудногорючих жидкостей, твердых горючих и трудногорючих веществ и материалов в пределах пожароопасного участка, пожарная нагрузка Q, МДж, определяется по формуле

где G_i - количество i-го материала пожарной нагрузки, кг; Q(p)_нi - низшая теплота сгорания i-го материала пожарной нагрузки, МДж x кг(-1).

Удельная пожарная нагрузка g, МДж x м(-2), определяется из соотношения

$$g = \frac{Q}{S}, \tag{22}$$

где S - площадь размещения пожарной нагрузки, м2 (но не менее 10 м2).

В помещениях категорий В1 - В4 допускается наличие нескольких участков с пожарной нагрузкой, не превышающей значений, приведенных в <u>табл.4</u>. В помещениях категории В4 расстояния между этими участками должны быть более предельных. В <u>табл.5</u> приведены рекомендуемые значения предельных расстояний I_n в зависимости от величины критической плотности падающих лучистых потоков q_k , кВт х м(-2), для пожарной нагрузки, состоящей из твердых горючих и трудногорючих материалов. Значения I_n , приведенные в табл.5, рекомендуются при условии, если H > 11 м; если H < 11 м, то предельное расстояние определяется как I_n = I_n + (11 - H), где I_n - определяется из табл.5, H - минимальное расстояние от поверхности пожарной нагрузки до нижнего пояса ферм перекрытия (покрытия), м.

Таблица 5

q_кр, кВт х м(-2)	5	10	15	20	25	30	40	50
1_пр,м	12	8	6	5	4	3,8	3,2	2,8

Значения с кр для некоторых материалов пожарной нагрузки приведены в табл.6.

Таблица 6

Материал	q_кр, кВт х м(-2)
Древесина (сосна влажностью 12%)	13,9
Древесно-стружечные плиты (плотностью 417 кг х м(-3)	8,3
Торф брикетный	13,2
Торф кусковой	9,8
Хлопок-волокно	7,5
Слоистый пластик	15,4
Стеклопластик	15,3
Пергамин	17,4
Резина	14,8
Уголь	35,0
Рулонная кровля	17,4
Сено, солома (при минимальной влажности до 8%)	7,0

Если пожарная нагрузка состоит из различных материалов, то значение q_кp определяется по материалу с минимальным значением q кp.

Для материалов пожарной нагрузки с неизвестными значениями q_кр значения предельных расстояний принимаются I пр >= 12 м.

Для пожарной нагрузки, состоящей из ЛВЖ или ГЖ, рекомендуемое расстояние I_пр между соседними участками размещения (разлива) пожарной нагрузки рассчитывается по формулам

$$1 >= 15$$
 м при $H >= 11$, (23) $1 >= 26 - H$ при $H < 11$. (24)

Если при определении категорий B2 или B3 количество пожарной нагрузки Q, определенное по формуле 21, отвечает неравенству

$$Q >= 0,64 g H,$$

то помещение будет относиться к категориям В1 или В2 соответственно. Здесь д т = 2200 МДж х м(-2) при 1401 МДж х м(-2) <= q <= 2200 МДж х м(-2) и q = 1400 МДж х м(-2) при 181 МДж х м(-2) <= q <= 1400 МДж х M(-2).

Определение избыточного давления взрыва для веществ и материалов, способных взрываться и гореть при взаимодействии с водой, кислородом воздуха или друг с другом

26. Расчетное избыточное давление взрыва Дельта Р для веществ и материалов, способных взрываться и гореть при взаимодействии с водой, кислородом воздуха или друг с другом, определяется по приведенной выше методике, полагая Z = 1 и принимая в качестве величины Н_т энергию, выделяющуюся при взаимодействии (с учетом сгорания продуктов взаимодействия до конечных соединений), или экспериментально в натурных испытаниях. В случае когда определить величину Дельта Р не представляется возможным, следует принимать ее превышающей 5 кПа.

Определение избыточного давления взрыва для взрывоопасных смесей, содержащих горючие газы (пары) и пыли

27. Расчетное избыточное давление взрыва Дельта Р для гибридных взрывоопасных смесей, содержащих горючие газы (пары) и пыли, определяется по формуле

Дельта
$$P = Дельта P + Дельта P$$
, (25)

где Дельта Р_1 - давление взрыва, вычисленное для горючего газа (пара) в соответствии с <u>пп.10</u> и 11; Дельта Р 2 - давление взрыва, вычисленное для горючей пыли в соответствии с п.17.

4. Категории зданий по взрывопожарной и пожарной опасности

28. Здание относится к категории А, если в нем суммарная площадь помещений категории А превышает 5% площади всех помещений или 200 м2.

Допускается не относить здание к категории А, если суммарная площадь помещений категории А в здании не превышает 25% суммарной площади всех размещенных в нем помещений (но не более 1000 м2) и эти помещения оборудуются установками автоматического пожаротушения.

29. Здание относится к категории Б, если одновременно выполнены два условия:

здание не относится к категории А;

суммарная площадь помещений категорий А и Б превышает 5% суммарной площади всех помещений или 200 м2.

Допускается не относить здание к категории Б, если суммарная площадь помещений категорий А и Б в здании не превышает 25% суммарной площади всех размещенных в нем помещений (но не более 1000 м2) и эти помещения оборудуются установками автоматического пожаротушения.

30. Здание относится к категории В, если одновременно выполнены два условия:

здание не относится к категориям А или Б;

суммарная площадь помещений категорий А, Б и В превышает 5% (10%, если в здании отсутствуют помещения категорий А и Б) суммарной площади всех помещений.

Допускается не относить здание к категории В, если суммарная площадь помещений категорий А, Б и В в здании не превышает 25% суммарной площади всех размещенных в нем помещений (но не более 3500 м2) и эти помещения оборудуются установками автоматического пожаротушения.

31. Здание относится к категории Г, если одновременно выполнены два условия: здание не относится к категориям А, Б или В;

суммарная площадь помещений категорий А, Б, В и Г превышает 5% суммарной площади всех помещений.

Допускается не относить здание к категории Г, если суммарная площадь помещений категорий А, Б, В и Г в здании не превышает 25% суммарной площади всех размещенных в нем помещений (но не более 5000 м2) и помещения категорий А, Б, В оборудуются установками автоматического пожаротушения.

32. Здание относится к категории Д, если оно не относится к категориям А, Б, В или Г.

5. Категории наружных установок по пожарной опасности

- 33. Категории наружных установок по пожарной опасности принимаются в соответствии с табл.7.
- 34. Определение категорий наружных установок следует осуществлять путем последовательной проверки их принадлежности к категориям, приведенным в <u>табл.7</u>, от высшей (А н) к низшей (Д н).
- 35. В случае, если из-за отсутствия данных представляется невозможным оценить величину индивидуального риска, допускается использование вместо нее следующих критериев.

Таблица 7

Категория наружной установки	Критерии отнесения наружной установки к той или иной категории по пожарной опасности
А_н	Установка относится к категории А_н, если в ней присутствуют (хранятся, перерабатываются, транспортируются) горючие газы; легковоспламеняющиеся жидкости с температурой вспышки не более 28°С; вещества и/или материалы, способные гореть при взаимодействии с водой, кислородом воздуха и/или друг с другом; при условии, что величина индивидуального риска при возможном сгорании указанных веществ с образованием волн давления превышает 10(-6) в год на расстоянии 30 м от наружной установки
Б_н	Установка относится к категории Б_н, если в ней присутствуют (хранятся, перерабатываются, транспортируются) горючие пыли и/или волокна; легковоспламеняющиеся жидкости с температурой вспышки более 28°С; горючие жидкости; при условии, что величина индивидуального риска при возможном сгорании пыле- и/или паровоздушных смесей с образованием волн давления превышает 10(-6) в год на расстоянии 30 м от наружной установки
В_н	Установка относится к категории В_н, если в ней присутствуют (хранятся, перерабатываются, транспортируются) горючие и/или трудногорючие жидкости; твердые горючие и/или трудногорючие вещества и/или материалы (в том числе пыли и/или волокна); вещества и/или материалы, способные при взаимодействии с водой, кислородом воздуха и/или друг с другом гореть; не реализуются критерии, позволяющие отнести установку к категориям А_н или Б_н; при условии, что величина индивидуального риска при возможном сгорании указанных веществ и/или материалов превышает 10 (-6) в год на расстоянии 30 м от наружной

	установки
Г_н	Установка относится к категории Г_н, если в ней присутствуют (хранятся, перерабатываются, транспортируются) негорючие вещества и/или материалы в горячем, раскаленном и/или расплавленном состоянии, процесс обработки которых сопровождается выделением лучистого тепла, искр и/или пламени, а также горючие газы, жидкости и/или твердые вещества, которые сжигаются или утилизируются в качестве топлива
Д_н	Установка относится к категории Д_н, если в ней присутствуют (хранятся, перерабатываются, транспортируются) в основном негорючие вещества и/или материалы в холодном состоянии и по перечисленным выше критериям она не относится к категориям A_{μ} , B_{μ} , B_{μ

Для категорий А_н и Б_н:

горизонтальный размер зоны, ограничивающей газопаровоздушные смеси с концентрацией горючего выше нижнего концентрационного предела распространения пламени (НКПР), превышает 30 м (данный критерий применяется только для горючих газов и паров) и/или расчетное избыточное давление при сгорании газо-, паро- или пылевоздушной смеси на расстоянии 30 м от наружной установки превышает 5 кПа.

Для категории В н:

интенсивность теплового излучения от очага пожара веществ и/или материалов, указанных для категории В_н, на расстоянии 30 м от наружной установки превышает 4 кВт х м2.

6. Методы расчета значений критериев пожарной опасности наружных установок

Методы расчета значений критериев пожарной опасности для горючих газов и паров

Выбор и обоснование расчетного варианта

 Расчет
 горизонтальных
 размеров
 зон,
 ограничивающих
 газо и

 паровоздушные
 смеси с концентрацией горючего выше
 НКПР,
 при
 аварийном

 поступлении
 горючих
 газов и паров ненагретых
 легковоспламеняющихся

 жидкостей в открытое
 пространство

<u>Расчет избыточного давления и импульса волны давления при сгорании смесей горючих газов и паров с воздухом в открытом пространстве</u>

Выбор и обоснование расчетного варианта

36. Выбор расчетного варианта следует осуществлять с учетом годовой частоты реализации и последствий тех или иных аварийных ситуации. В качестве расчетного для вычисления критериев пожарной опасности для горючих газов и паров следует принимать вариант аварии, для которого произведение годовой частоты реализации этого варианта Q_w и расчетного избыточного давления Дельта Р при сгорании газопаровоздушных смесей в случае реализации указанного варианта максимально, то есть:

$$G = Q$$
 х Дельта $P = \max$. (26)

Расчет величины G производится следующим образом:

а) рассматриваются различные варианты аварии и определяются из статистических данных или на основе годовой частоты аварий со сгоранием газопаровоздушных смесей Q_wi для этих вариантов;

- б) для каждого из рассматриваемых вариантов определяются по изложенной ниже методике значения расчетного избыточного давления Дельта Р_i;
- в) вычисляются величины G_i = Q_wi x Дельта_Pi для каждого из рассматриваемых вариантов аварии, среди которых выбирается вариант с наибольшим значением G i;
- г) в качестве расчетного для определения критериев пожарной опасности принимается вариант, в котором величина G_i максимальна. При этом количество горючих газов и паров, вышедших в атмосферу, рассчитывается, исходя из рассматриваемого сценария аварии с учетом пунктов 38 43.
- 37. При невозможности реализации описанного выше метода в качестве расчетного следует выбирать наиболее неблагоприятный вариант аварии или период нормальной работы аппаратов, при котором в образовании горючих газопаровоздушных смесей участвует наибольшее количество газов и паров, наиболее опасных в отношении последствий сгорания этих смесей. В этом случае количество газов и паров, вышедших в атмосферу, рассчитывается в соответствии с пунктами 38 43.
- 38. Количество поступивших веществ, которые могут образовывать горючие газовоздушные или паровоздушные смеси, определяется, исходя из следующих предпосылок:
- а) происходит расчетная авария одного из аппаратов согласно <u>п.36</u> или <u>п.37</u> (в зависимости от того, какой из подходов к определению расчетного варианта аварии принят за основу);
 - б) все содержимое аппарата поступает в окружающее пространство;
- в) происходит одновременно утечка веществ из трубопроводов, питающих аппарат по прямому и обратному потоку в течение времени, необходимого для отключения трубопроводов.

Расчетное время отключения трубопроводов определяется в каждом конкретном случае, исходя из реальной обстановки, и должно быть минимальным с учетом паспортных данных на запорные устройства, характера технологического процесса и вида расчетной аварии.

Расчетное время отключения трубопроводов следует принимать равным:

времени срабатывания систем автоматики отключения трубопроводов согласно паспортным данным установки, если вероятность отказа системы автоматики не превышает 0,000001 в год или обеспечено резервирование ее элементов (но не более 120 с);

120 с, если вероятность отказа системы автоматики превышает 0,000001 в год и не обеспечено резервирование ее элементов;

300 с при ручном отключении.

Не допускается использование технических средств для отключения трубопроводов, для которых время отключения превышает приведенные выше значения.

Под "временем срабатывания" и "временем отключения" следует понимать промежуток времени от начала возможного поступления горючего вещества из трубопровода (перфорация, разрыв, изменение номинального давления и т.п.) до полного прекращения поступления газа или жидкости в окружающее пространство. Быстродействующие клапаны-отсекатели должны автоматически перекрывать подачу газа или жидкости при нарушении электроснабжения.

В исключительных случаях в установленном порядке допускается превышение приведенных выше значений времени отключения трубопроводов специальным решением соответствующих министерств или ведомств по согласованию с Госгортехнадзором России на подконтрольных ему производствах и предприятиях и МЧС России;

- г) происходит испарение с поверхности разлившейся жидкости; площадь испарения при разливе на горизонтальную поверхность определяется (при отсутствии справочных или иных экспериментальных данных), исходя из расчета, что 1 л смесей и растворов, содержащих 70% и менее (по массе) растворителей, разливается на площади 0,10 м2, а остальных жидкостей на 0,15 м2;
- д) происходит также испарение жидкостей из емкостей, эксплуатируемых с открытым зеркалом жидкости, и со свежеокрашенных поверхностей;
- е) длительность испарения жидкости принимается равной времени ее полного испарения, но не более 3600 с.
- 39. Масса газа m, кг, поступившего в окружающее пространство при расчетной аварии, определяется по формуле

$$m = (V + V) \times po , \qquad (27)$$

где V_a - объем газа, вышедшего из аппарата, м3; V_T - объем газа вышедшего из трубопровода, м3; p_0 - плотность газа, кг х м(-3).

При этом

$$V = 0,01 \times P \times V,$$
 (28)

где P_1 - давление в аппарате, кПа; V - объем аппарата, м3;

$$V = V + V ,$$

$$T 1T 2T$$
(29)

где V_1т - объем газа, вышедшего из трубопровода до его отключения, м3; V_2т - объем газа, вышедшего из трубопровода после его отключения, м3;

$$V = q \times T,$$

$$1T$$
(30)

где q - расход газа, определяемый в соответствии с технологическим регламентом в зависимости от давления в трубопроводе, его диаметра, температуры газовой среды и т.д., м3 х с(-1); T - время, определяемое по $\underline{n.38}$, с;

$$V = 0,01 \times \pi u \times P \times (r L + r L + ... + r L),$$
 (31)

- где P_2 максимальное давление в трубопроводе по технологическому регламенту, кПа; r внутренний радиус трубопроводов, м; L длина трубопроводов от аварийного аппарата до задвижек, м.
- 40. Масса паров жидкости m, кг, поступивших в окружающее пространство при наличии нескольких источников испарения (поверхность разлитой жидкости, поверхность со свеженанесенным составом, открытые емкости и т.п.), определяется из выражения

$$m = m + m + m + m + m$$
, (32)
 $p = m + m + m$ mep

где m_p - масса жидкости, испарившейся с поверхности разлива, кг; m_емк - масса жидкости, испарившейся с поверхностей открытых емкостей, кг; m_св.окр - масса жидкости, испарившейся с поверхностей, на которые нанесен применяемый состав, кг; m_пер - масса жидкости, испарившейся в окружающее пространство в случае ее перегрева, кг.

При этом каждое из слагаемых (т р, т емк, т св.окр) в формуле (32) определяют из выражения

$$m = W \times F \times T, \tag{33}$$

где W - интенсивность испарения, кг x c(-1) x м(-2); F_u - площадь испарения, м2, определяемая в соответствии с <u>п.38</u> в зависимости от массы жидкости m_п, вышедшей в окружающее пространство; T - продолжительность поступления паров легковоспламеняющихся и горючих жидкостей в окружающее пространство согласно п.38, с.

Величину m пер определяют по формуле (при T а > T кип)

Если аварийная ситуация связана с возможным поступлением жидкости в распыленном состоянии, то она должна быть учтена в формуле (32) введением дополнительного слагаемого, учитывающего общую массу поступившей жидкости от распыляющих устройств, исходя из продолжительности их работы.

- 41. Масса т п вышедшей жидкости, кг, определяется в соответствии с п.38.
- 42. Интенсивность испарения W определяется по справочным и экспериментальным данным. Для ненагретых ЛВЖ при отсутствии данных допускается рассчитывать W по формуле

$$W = 10$$
 кв.корень (M) х P , (35)

где M - молярная масса, г х моль(-1); Р_н - давление насыщенного пара при расчетной температуре жидкости, определяемое по справочным данным в соответствии с требованиями <u>п.3</u>, кПа.

43. Для сжиженных углеводородных газов (СУГ) при отсутствии данных допускается рассчитывать удельную массу испарившегося СУГ m суг из пролива, кг х м(-2), по формуле

$$m = \frac{M}{-} \times (T - T) \times (2 \times \text{лямбда} \times \text{кв.корень}(\frac{t}{-}) + \text{суг L} 0 \times \text{тв} \text{пи x a}$$
 исп 5,1 х кв.корень(Re) х лямбда х t

где М - молярная масса СУГ, кг х моль(-1); L_исп - мольная теплота испарения СУГ при начальной температуре СУГ T_{-} ж, Дж х моль(-1); T_{-} 0 - начальная температура материала, на поверхность которого разливается СУГ, К; T_{-} ж - начальная температура СУГ, К; ламбда_тв - коэффициент теплопроводности материала, на поверхность которого разливается СУГ, $BT \times M(-1) \times K(-1)$;

температуропроводности материала, на поверхность которого разливается СУГ, м2 х с(-1); С_тв - теплоемкость материала, на поверхность которого разливается СУГ, Дж х кг(-1) х К(-1); ро_тв - плотность материала, на поверхность которого разливается СУГ, кг х м(-3); t - текущее время, c, принимаемое равным времени полного испарения СУГ, но не более 3600 c;

$$Ud$$
 —— Число Рейнольдса; U — скорость воздушного потока, м х с ; ню в —— $4F$ d = кв.корень (——) — характерный размер пролива СУГ, м; ню_в —

кинематическая вязкость воздуха, м2 х с(-1); ламбда_в - коэффициент теплопроводности воздуха, Вт х м(-1) х К(-1).

<u>Формула 36</u> справедлива для СУГ с температурой T_{-} ж <= T_{-} кип. При температуре СУГ T_{-} ж > T_{-} кип дополнительно рассчитывается масса перегретых СУГ m_{-} пер по <u>формуле 34.</u>

Расчет горизонтальных размеров зон, ограничивающих газо- и паровоздушные смеси с концентрацией горючего выше НКПР, при аварийном поступлении горючих газов и паров ненагретых легковоспламеняющихся жидкостей в открытое пространство

44. Горизонтальные размеры зоны, м, ограничивающие область концентраций, превышающих нижний концентрационный предел распространения пламени (С_нкпр), вычисляют по формулам: для горючих газов (ГГ):

для паров ненагретых легковоспламеняющихся жидкостей (ЛВЖ):

где m_{Γ} - масса поступивших в открытое пространство ГГ при аварийной ситуации, кг; ро_г - плотность ГГ при расчетной температуре и атмосферном давлении, кг х м(-3); m_{Γ} - масса паров ЛВЖ, поступивших в открытое пространство за время полного испарения, но не более 3600 с, кг; ро_п - плотность паров ЛВЖ при расчетной температуре и атмосферном давлении, кг х м(-3); P_{Γ} - давление насыщенных паров ЛВЖ при расчетной температуре, кПа; K - коэффициент, принимаемый равным K = T/3600 для ЛВЖ; T - продолжительность поступления паров ЛВЖ в открытое пространство, T с; T - нижний концентрационный предел распространения пламени ГГ или паров ЛВЖ, T (об.); T - молярная масса, кг х кмоль(-1); T - р - расчетная температура, T с.

- В качестве расчетной температуры следует принимать максимально возможную температуру воздуха в соответствующей климатической зоне или максимальную возможную температуру воздуха по технологическому регламенту с учетом возможного повышения температуры в аварийной ситуации. Если такого значения расчетной температуры t_p по каким-либо причинам определить не удается, допускается принимать ее равной 61°C.
- 45. За начало отсчета горизонтального размера зоны принимают внешние габаритные размеры аппаратов, установок, трубопроводов и т.п. Во всех случаях значение R_нкпр должно быть не менее 0,3 м для ГГ и ЛВЖ.

Расчет избыточного давления и импульса волны давления при сгорании смесей горючих газов и паров с воздухом в открытом пространстве

- 46. Исходя из рассматриваемого сценария аварии, определяется масса m, кг, горючих газов и (или) паров, вышедших в атмосферу из технологического аппарата в соответствии с <u>пунктами 38 43.</u>
- 47. Величину избыточного давления Дельта Р, кПа, развиваемого при сгорании газопаровоздушных смесей, определяют по формуле

$$0,33$$
 $0,66$ 2 3 Дельта $P = P \times (0,8m /r + 3m /r + 5m /r), (39) 0 пр пр$

где P_0 - атмосферное давление, кПа (допускается принимать равным 101 кПа); r - расстояние от геометрического центра газопаровоздушного облака, м; $m_$ пр - приведенная масса газа или пара, кг, вычисляется по формуле

$$m = (Q / Q) \times m \times Z,$$

$$np \quad cr \quad 0$$
(40)

- где Q_{CF} удельная теплота сгорания газа или пара, Дж х кг(-1); Z коэффициент участия горючих газов и паров в горении, который допускается принимать равным 0,1; Q_{D} константа, равная 4,52 х 10(6) Дж х кг(-1); m масса горючих газов и (или) паров, поступивших в результате аварии в окружающее пространство, кг.
 - 48. Величину импульса волны давления і, Па х с, вычисляют по формуле

$$0,66$$
 $i = 123 \times m / r.$
 np
(41)

Метод расчета значений критериев пожарной опасности для горючих пылей

- 49. В качестве расчетного варианта аварии для определения критериев пожарной опасности для горючих пылей следует выбирать наиболее неблагоприятный вариант аварии или период нормальной работы аппаратов, при котором в горении пылевоздушной смеси участвует наибольшее количество веществ или материалов, наиболее опасных в отношении последствий такого горения.
- 50. Количество поступивших веществ, которые могут образовывать горючие пылевоздушные смеси, определяется, исходя из предпосылки о том, что в момент расчетной аварии произошла плановая (ремонтные работы) или внезапная разгерметизация одного из технологических аппаратов, за которой последовал аварийный выброс в окружающее пространство находившейся в аппарате пыли.
- 51. Расчетная масса пыли, поступившей в окружающее пространство при расчетной аварии, определяется по формуле

$$M = M + M$$
, (42)

где M - расчетная масса поступившей в окружающее пространство горючей пыли, кг, M_вз - расчетная масса взвихрившейся пыли, кг; M_ав - расчетная масса пыли, поступившей в результате аварийной ситуации, кг.

52. Величина М_вз определяется по формуле

$$M = K \times K \times M , \qquad (43)$$

где K_{-} г - доля горючей пыли в общей массе отложений пыли; K_{-} вз - доля отложенной вблизи аппарата пыли, способной перейти во взвешенное состояние в результате аварийной ситуации. В отсутствие экспериментальных данных о величине K_{-} вз допускается принимать K_{-} вз = 0,9; M_{-} п - масса отложившейся вблизи аппарата пыли к моменту аварии, кг.

53. Величина М ав определяется по формуле

$$M = (M + q \times T) \times K ,$$
ab an n

где М_ап - масса горючей пыли, выбрасываемой в окружающее пространство при разгерметизации технологического аппарата, кг; при отсутствии ограничивающих выброс пыли инженерных устройств следует полагать, что в момент расчетной аварии происходит аварийный выброс в окружающее пространство всей находившейся в аппарате пыли; q - производительность, с которой продолжается поступление пылевидных веществ в аварийный аппарат по трубопроводам до момента их отключения, кг х с(-1); T - расчетное время отключения, с, определяемое в каждом конкретном случае, исходя из реальной обстановки. Следует принимать равным времени срабатывания системы автоматики, если вероятность ее отказа не превышает 0,000001 в год или обеспечено резервирование ее элементов (но не более 120 c); 120 с, если вероятность отказа системы автоматики превышает 0,000001 в год и не обеспечено резервирование ее элементов; 300 с при ручном отключении; К_п - коэффициент пыления, представляющий отношение массы взвешенной в воздухе пыли ко всей массе пыли, поступившей из аппарата. В отсутствие экспериментальных данных о величине К_п допускается принимать: 0,5 - для пылей с дисперсностью не менее 350 мкм; 1,0 - для пылей с дисперсностью менее 350 мкм.

- 54. Избыточное давление Дельта Р для горючих пылей рассчитывается следующим образом:
- а) определяют приведенную массу горючей пыли т_пр, кг, по формуле

$$m = M \times Z \times H / H ,$$

$$np \qquad T \quad TO$$
(45)

б) вычисляют расчетное избыточное давление Дельта Р, кПа, по формуле

$$0,33$$
 $0,66$ 2 3
Дельта P = P x $(0,8m /r + 3m /r + 5m /r)$, (46)

где r - расстояние от центра пылевоздушного облака, м. Допускается отсчитывать величину r от геометрического центра технологической установки; P_0 - атмосферное давление, кПа.

55. Величину импульса волны давления і, Па х с, вычисляют по формуле

$$0,66$$
 $i = 123m /r.$
 πp
(47)

Метод расчета интенсивности теплового излучения

56. Интенсивность теплового излучения рассчитывают для двух случаев пожара (или для того из них, который может быть реализован в данной технологической установке):

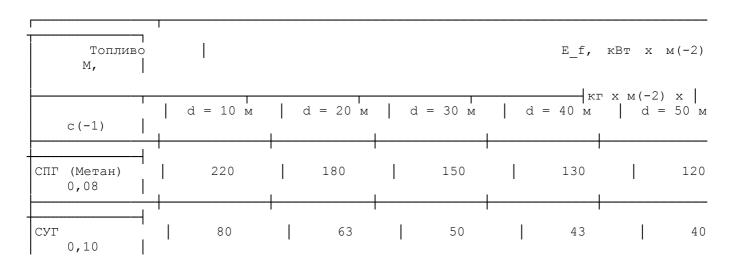
пожар проливов ЛВЖ, ГЖ или горение твердых горючих материалов (включая горение пыли);

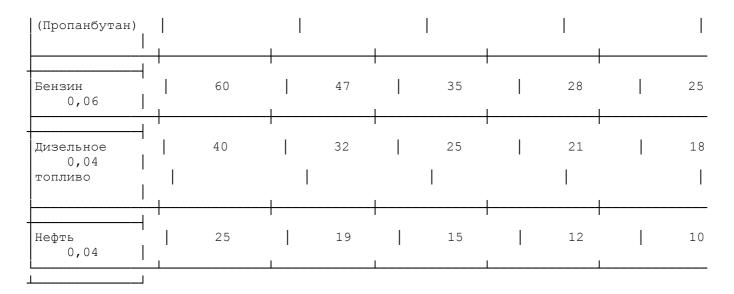
"огненный шар" - крупномасштабное диффузионное горение, реализуемое при разрыве резервуара с горючей жидкостью или газом под давлением с воспламенением содержимого резервуара.

Если возможна реализация обоих случаев, то при оценке значений критерия пожарной опасности учитывается наибольшая из двух величин интенсивности теплового излучения.

57. Интенсивность теплового излучения q, кВт x м(-2), для пожара пролива жидкости или при горении твердых материалов вычисляют по формуле

$$q = E F x Tay,$$
 (48)


где E_f - среднеповерхностная плотность теплового излучения пламени, кВт х м(-2); F_q - угловой коэффициент облученности; тау - коэффициент пропускания атмосферы.


Значение E_f принимается на основе имеющихся экспериментальных данных. Для некоторых жидких углеводородных топлив указанные данные приведены в <u>табл.8.</u>

При отсутствии данных допускается принимать величину E_f равной: 100 кВт х м(-2) для СУГ, 40 кВт х м(-2) для нефтепродуктов, 40 кВт х м(-2) для твердых материалов.

Таблица 8

Среднеповерхностная плотность теплового излучения пламени в зависимости от диаметра очага и удельная массовая скорость выгорания для некоторых жидких углеводородных топлив

Примечание. Для диаметров очагов менее 10 м или более 50 м следует принимать величину E_f такой же, как и для очагов диаметром 10 м и 50 м соответственно.

Рассчитывают эффективный диаметр пролива d, м, по формуле

$$d = \text{KB.KOPeHb} \frac{4 \times F}{\text{MM}}, \tag{49}$$

где F - площадь пролива, м2. Вычисляют высоту пламени H, м, по формуле

$$H = 42d(\frac{M}{po (кв.корень (g x d)})$$
 , (50)

где M - удельная массовая скорость выгорания топлива, кг х м(-2) х с(-1); ро_в - плотность окружающего воздуха, кг х м(-3); g = 9,81 м х с(-2) - ускорение свободного падения. Определяют угловой коэффициент облученности F q по формулам:

$$2$$
 2
F = кв.корень (F + F), (51)

где F_v, F_н - факторы облученности для вертикальной и горизонтальной площадок соответственно, определяемые с помощью выражений:

$$F = \frac{1}{\Pi M} \times \left[\frac{1}{S} \times \operatorname{arctg}\left(\frac{h}{2}\right) - \frac{h}{S} \times \left\{\operatorname{arctg}(\kappa_{B}, \kappa_{OPeHb}) - \frac{h}{S}\right\} \times \left\{\operatorname{a$$

кв.корень (В - 1)

$$-\frac{(A-1/S)}{2} \times \operatorname{arctg}(\kappa B. \kappa open b (\frac{(A+1) \times (S-1)}{(A-1) \times (S+1)}))], \tag{53}$$

кв.корень (А - 1)

$$2 2 A = (h + S + 1) / (2S); (54)$$

$$B = (1 + S)/(2S); (55)$$

$$S = 2r/d; (56)$$

$$h = 2H/d, (57)$$

где r - расстояние от геометрического центра пролива до облучаемого объекта, м. Определяют коэффициент пропускания атмосферы по формуле

$$-4$$
Tay = exp[-7,0 x 10 x (r - 0,5d)]. (58)

58. Интенсивность теплового излучения q, кВт x м(-2), для "огненного шара" вычисляют по формуле (48).

Величину E_f определяют на основе имеющихся экспериментальных данных. Допускается принимать E_f равным 450 кВт х м(-2).

Значение F_q вычисляют по формуле

$$F = \frac{\frac{H/D + 0,5}{s}}{1,5},$$

$$Q = \frac{1,5}{2}$$

$$4 \times [(H/D + 0,5) + (r/D)]$$

$$S = \frac{1}{s}$$

$$(59)$$

где H - высота центра "огненного шара", м; D_s - эффективный диаметр "огненного шара", м; r - расстояние от облучаемого объекта до точки на поверхности земли непосредственно под центром "огненного шара", м.

Эффективный диаметр "огненного шара" D s определяют по формуле

$$0,327$$
 $D = 5,33m$ (60)

где m - масса горючего вещества, кг.

Величину H определяют в ходе специальных исследований. Допускается принимать величину H равной D s/2.

Время существования "огненного шара" t_s , c, определяют по формуле

$$t = 0,92m . (61)$$

Коэффициент пропускания атмосферы тау рассчитывают по формуле

$$-4$$
 2 2 2 Tay = exp[-7,0 x 10 x (кв.корень(r + H) - D/2)]. (62)

7. Метод оценки индивидуального риска

- 59. Настоящий метод применим для расчета величины индивидуального риска (далее по тексту риска) на наружных установках при возникновении таких поражающих факторов, как избыточное давление, развиваемое при сгорании газо-, паро- или пылевоздушных смесей, и тепловое излучение при сгорании веществ и материалов.
- 60. Величину индивидуального риска R_B при сгорании газо-, паро- или пылевоздушных смесей рассчитывают по формуле

$$R = \text{сумма Q x Q ,}$$

$$B i = 1 Bi B\Pi i$$
(63)

где Q_Ві - годовая частота возникновения і-й аварии с горением газо-, паро- или пылевоздушной смеси на рассматриваемой наружной установке, 1/год; Q_ВПі - условная вероятность поражения человека, находящегося на заданном расстоянии от наружной установки, избыточным давлением при реализации указанной аварии і-го типа; n - количество типов рассматриваемых аварий.

Значения Q_Ві определяют из статистических данных или на основе методик, изложенных в нормативных документах, утвержденных в установленном порядке. В формуле (63) допускается учитывать только одну наиболее неблагоприятную аварию, величина Q_В для которой принимается равной годовой частоте возникновения пожара с горением газо-, паро- или пылевоздушных смесей на наружной установке по нормативным документам, утвержденным в установленном порядке, а значение Q_ВП вычислять, исходя из массы горючих веществ, вышедших в атмосферу, в соответствии с пп. 37 - 43.

61. Величину индивидуального риска R_п при возможном сгорании веществ и материалов, указанных в <u>табл.7</u> для категории B_н, рассчитывают по формуле

R = Cymma Q x Q , (64)

$$\pi$$
 i = 1 fi f π i

где Q_fi - годовая частота возникновения пожара на рассматриваемой наружной установке в случае аварии i-го типа, 1/год; Q_fii - условная вероятность поражения человека, находящегося на заданном расстоянии от наружной установки, тепловым излучением при реализации аварии i-го типа; n - количество типов рассматриваемых аварий.

Значение Q_fi определяют из статистических данных или на основе методик, изложенных в нормативных документах, утвержденных в установленном порядке.

- В формуле (64) допускается учитывать только одну наиболее неблагоприятную аварию, величина Q_f для которой принимается равной годовой частоте возникновения пожара на наружной установке по нормативным документам, утвержденным в установленном порядке, а значение Q_fп вычислять, исходя из массы горючих веществ, вышедших в атмосферу, в соответствии с пунктами 37 43.
- 62. Условную вероятность Q_ВПі поражения человека избыточным давлением при сгорании газо-, паро- или пылевоздушных смесей на расстоянии г от эпицентра определяют следующим образом:

вычисляют избыточное давление Дельта Р и импульс і по методам, описанным в разделе 6 (методы расчета значений критериев пожарной опасности для горючих газов и паров или метод расчета значений критериев пожарной опасности для горючих пылей);

исходя из значений Дельта Р и і, вычисляют величину "пробит"-функции Р г по формуле

$$Pr = 5 - 0,26ln(V),$$
 (65)

$$V = (\frac{17500}{\text{Дельта P}}) + (\frac{290}{\text{i}})$$
, (66)

где Дельта Р - избыточное давление, Па; і - импульс волны давления, Па х с;

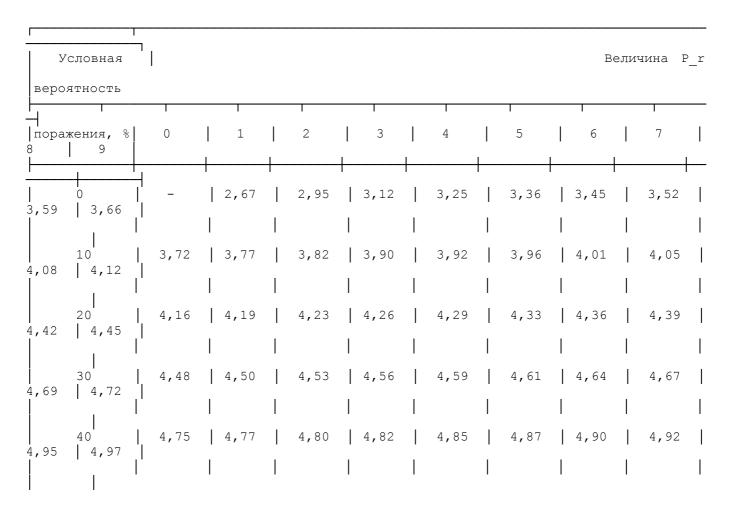
С помощью <u>таблицы 9</u> определяют условную вероятность поражения человека. Например, при значении $P_r = 2,95$ значение $Q_в = 2\% = 0,02$, а при $P_r = 8,09$ значение $Q_в = 99,9\% = 0,999$.

- 63. Условную вероятность поражения человека тепловым излучением Q_fПi определяют следующим образом:
 - а) рассчитывают величину Р_r по формуле

$$P = -14,9 + 2,56 \ln(t \times q),$$
(67)

где t - эффективное время экспозиции, c; q - интенсивность теплового излучения, $kBt \times m(-2)$, определяемая в соответствии c методом расчета интенсивности теплового излучения (раздел 6).

Величину t находят:


1) для пожаров проливов ЛВЖ, ГЖ и твердых материалов

$$t = t + x/u, \tag{68}$$

- где t_0 характерное время обнаружения пожара, c, (допускается принимать t = 5 c); x расстояние от места расположения человека до зоны, где интенсивность теплового излучения не превышает 4 кВт x м(-2), м; u скорость движения человека, м x c(-1) (допускается принимать u = 5 м x c(-1));
- 2) для воздействия "огненного шара" в соответствии с методом расчета интенсивности теплового излучения (раздел 6);
- б) с помощью $\underline{\text{табл.9}}$ определяют условную вероятность Q_Пі поражения человека тепловым излучением.
- 64. Если для рассматриваемой технологической установки возможен как пожар пролива, так и "огненный шар", в формуле (64) должны быть учтены оба указанных выше типа аварии.

Таблица 9

Значения условной вероятности поражения человека в зависимости от величины P_r

5,20 5,23	1 1
	41 5,44
	71 5,74
	08 6,13
- 0,00 0,10 0,20 0,30 0,40 0,50 0,	60 0,70
0,80 0,90	
99 7,33 7,37 7,41 7,46 7,51 7,58 7, 7,88 8,09	65 7,75

^{*} Далее по тексту - помещений и зданий

Приложение Рекомендуемое

Расчетное определение значения коэффициента Z участия горючих газов и паров ненагретых легковоспламеняющихся жидкостей во взрыве

Материалы настоящего приложения применяются для случая 100 м/ро_г,п V_св) < 0,5 С_НКПР, где С_НКПР - нижний концентрационный предел распространения пламени газа или пара, % (об.), и для помещений в форме прямоугольного параллелепипеда с отношением длины к ширине не более 5.

1. Коэффициент Z участия горючих газов и паров легковоспламеняющихся

жидкостей во взрыве при заданном уровне значимости Q (C $> \overline{C}$) рассчитывается по формулам:

при X
$$<= \frac{1}{-}$$
 L и Y $<= \frac{1}{-}$ S $+$ KRIP $<= \frac{1}{-}$ S $+$ KRIP $<= \frac{-3}{-}$ C $+$ KRIP $<= \frac{5 \times 10}{-}$ пи $<= \frac{5 \times 10}{-}$ пи $<= \frac{-3}{-}$ ро (C $+ \frac{-}{-}$ НКПР $<= \frac{-}{-}$ НКПР $<= \frac{-}{-}$ КВПР $<= \frac{-}{-}$ В $<= \frac{-}{-}$ В

^{**} Далее по тексту - наружные установки

$$Z = \frac{-3}{m}$$
 ро (C + $\frac{HK\Pi p}{m}$) F Z (2)

где С_0 - предэкспоненциальный множитель, % (об.), равный: при отсутствии подвижности воздушной среды для горючих газов

$$C = 3,77 \times 10 \frac{3}{po V},$$

$$po V$$

$$r CB$$
(3)

при подвижности воздушной среды для горючих газов

$$C = 3 \times 10 \frac{2}{\text{po V U}}, \tag{4}$$

при отсутствии подвижности воздушной среды для паров легковоспламеняющихся жидкостей

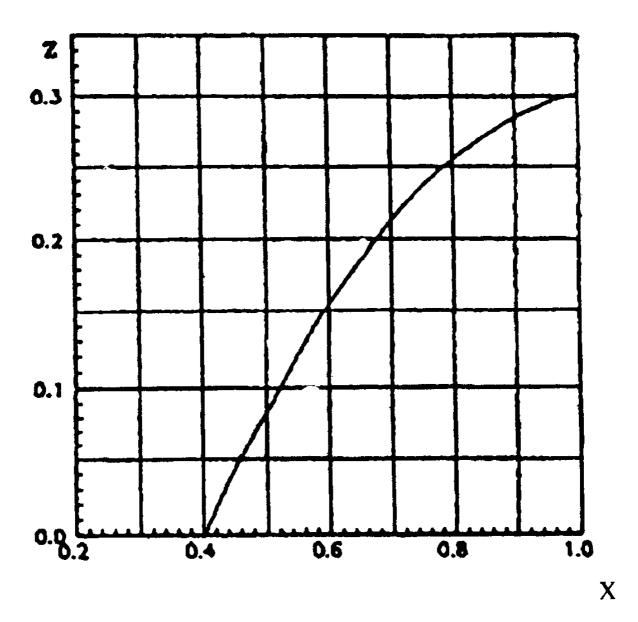
при подвижности воздушной среды для паров легковоспламеняющихся жидкостей

где m - масса газа или паров ЛВЖ, поступающих в объем помещения в соответствии с разделом 3, кг; дельта - допустимые отклонения концентрации при задаваемом уровне значимости

Q (C >
$$\overline{\text{C}}$$
), приведенные в таблице П1; X , Y , Z - нкпр нкпр нкпр расстояния по осям X, Y и Z от источника поступления газа или пара, ограниченные нижним концентрационным пределом распространения пламени соответственно, м; рассчитываются по формулам (10 - 12) приложения; L, S - длина и ширина помещения соответственно, м; F - площадь пола помещения, м2;

U - подвижность воздушной среды, м х с(-1); С_н - концентрация насыщенных паров при расчетной температуре t_p, °C, воздуха в помещении, % (об.).

Концентрация С_н может быть найдена по формуле


$$\begin{array}{ccc}
P \\
H \\
C &= 100 & P \\
0
\end{array}$$
(7)

где Р_н - давление насыщенных паров при расчетной температуре (находится из справочной литературы), кПа; Р_0 - атмосферное давление, равное 101 кПа.

Характер распределения концентраций	Q(C > C)	дельта
Для горючих газов при отсутствии подвижности воздушной среды	0,1 0,05 0,01 0,003 0,001 0,000001	1,29 1,38 1,53 1,63 1,70 2,04
Для горючих газов при подвижности воздушной среды	0,1 0,05 0,01 0,003 0,001 0,000001	1,29 1,37 1,52 1,62 1,70 2,03
Для паров легковоспламеняющихся жидкостей при отсутствии подвижности воздушной среды	0,1 0,05 0,01 0,003 0,001 0,000001	1,19 1,25 1,35 1,41 1,46 1,68
Для паров легковоспламеняющихся жидкостей при подвижности воздушной среды	0,1 0,05 0,01 0,003 0,001 0,000001	1,21 1,27 1,38 1,45 1,51 1,75

Величина уровня значимости Q (C > C) выбирается, исходя из - особенностей технологического процесса. Допускается принимать Q(C > C) равным 0,05.

^{2.} Величина коэффициента Z участия паров легковоспламеняющихся жидкостей во взрыве может быть определена по графику, приведенному на рисунке.

"График определения величины коэффициента Z участия паров легковоспламеняющихся жидкостей во взрыве"

Значения Х определяются по формуле

$$C$$
 /C*, если C <= C *;
 H H H (8) C C C C C C C

где С* - величина, задаваемая соотношением

$$C^* = \Phi u C , \qquad (9)$$

где фи - эффективный коэффициент избытка горючего, принимаемый равным 1,9. 3. Расстояния X_нкпр, Y_нкпр и Z_нкпр рассчитываются по формулам:

0,5 дельта С

$$X = K L(K ln \frac{0}{1 2 C})$$
; (10)
 $K = K L(K ln \frac{0}{1 2 C})$; (10)
 $K = K L(K ln \frac{0}{1 2 C})$; (11)
 $K = K S (K ln \frac{0}{1 2 C})$; (11)
 $K = K S (K ln \frac{0}{1 2 C})$; (11)

где K_1 - коэффициент, принимаемый равным 1,1314 для горючих газов и 1,1958 для легковоспламеняющихся жидкостей; K_2 - коэффициент, принимаемый равным 1 для горючих газов и K_2 = T/3600 для легковоспламеняющихся жидкостей; K_3 - коэффициент, принимаемый равным 0,0253 для горючих газов при отсутствии подвижности воздушной среды; 0,02828 для горючих газов при подвижности воздушной среды; 0,04714 для легковоспламеняющихся жидкостей при отсутствии подвижности воздушной среды и 0,3536 для легковоспламеняющихся жидкостей при подвижности воздушной среды; H_3 - высота помещения, M_3